lunes, 26 de junio de 2017

DIRECCION MAC


En las redes de computadoras, la dirección MAC (siglas en inglés de Media Access Control) es un identificador de 48 bits (6 bloques de dos caracteres hexadecimales (4 bits)) que corresponde de forma única a una tarjeta o dispositivo de red. Se conoce también como dirección física, y es única para cada dispositivo. Está determinada y configurada por el IEEE (los últimos 24 bits) y el fabricante (primeros 24 bits) utilizando el organizationally unique identifier. La mayoría de los protocolos que trabajan en la capa 2 del modelo OSI usan una de las tres numeraciones manejadas por el IEEE: MAC-48, EUI-48, y EUI-64, las cuales han sido diseñadas para ser identificadores globalmente únicos. No todos los protocolos de comunicación usan direcciones MAC, y no todos los protocolos requieren identificadores globalmente únicos.

Descripción

Es también: "La Dirección del Hardware de Control de acceso a soportes de un distribuidor que identifica los equipos, los servidores, los routers u otros dispositivos de red. Al mismo tiempo es un identificador único que está disponible en NIC y otros equipamientos de red. La mayoría de los protocolos de red usan IEEE: MAC-48, EUI-48 y EUI-64, que se diseñan para ser globalmente únicos. Un equipo en la red se puede identificar mediante sus direcciones MAC e IP."1
Las direcciones MAC son únicas a nivel mundial, puesto que son escritas directamente, en forma binaria, en el hardware en su momento de fabricación. Debido a esto, las direcciones MAC son a veces llamadas burned-in addresses, en inglés.
Si nos fijamos en la definición como cada bloque hexadecimal son 8 dígitos binarios (bits), tendríamos:
6 * 8 = 48 bits únicos
En la mayoría de los casos no es necesario conocer la dirección MAC, ni para montar una red doméstica, ni para configurar la conexión a internet, usándose esta sólo a niveles internos de la red. Sin embargo, es posible añadir un control de hardware en un conmutador o un punto de acceso inalámbrico, para permitir sólo a unas MAC concretas el acceso a la red. En este caso, deberá saberse la MAC de los dispositivos para añadirlos a la lista. Dicho medio de seguridad se puede considerar un refuerzo de otros sistemas de seguridad, ya que teóricamente se trata de una dirección única y permanente, aunque en todos los sistemas operativos hay métodos que permiten a las tarjetas de red identificarse con direcciones MAC distintas de la real.
La dirección MAC es utilizada en varias tecnologías entre las que se incluyen:
MAC opera en la capa 2 del modelo OSI, encargada de hacer fluir la información libre de errores entre dos máquinas conectadas directamente. Para ello se generan tramas, pequeños bloques de información que contienen en su cabecera las direcciones MAC correspondiente al emisor y receptor de la información.

EJERCICIO:

Realiza el siguiente cuestionario

1. ¿Cual es el significado de las siglas MAC en ingles?

2. ¿Que es la dirección MAC?

3. ¿De que otra forma se le conoce a la dirección MAC?


4. ¿Debido a que las direcciones MAC son únicas a nivel mundial?

5. Menciona por lo menos 4 tecnologías en las que es utilizada la dirección MAC:






sábado, 24 de junio de 2017

QUE ES UN SERVIDOR

Un servidor es una aplicación en ejecución (software) capaz de atender las peticiones de un cliente y devolverle una respuesta en concordancia. Los servidores se pueden ejecutar en cualquier tipo de computadora, incluso en computadoras dedicadas a las cuales se les conoce individualmente como «el servidor». En la mayoría de los casos una misma computadora puede proveer múltiples servicios y tener varios servidores en funcionamiento. La ventaja de montar un servidor en computadoras dedicadas es la seguridad. Por esta razón la mayoría de los servidores son procesos diseñados de forma que puedan funcionar en computadoras de propósito específico.

Los servidores operan a través de una arquitectura cliente-servidor. Los servidores son programas de computadora en ejecución que atienden las peticiones de otros programas, los clientes. Por tanto, el servidor realiza otras tareas para beneficio de los clientes. Ofrece a los clientes la posibilidad de compartir datos, información y recursos de hardware y software. Los clientes usualmente se conectan al servidor a través de la red pero también pueden acceder a él a través de la computadora donde está funcionando. En el contexto de redes Internet Protocol (IP), un servidor es un programa que opera como oyente de un socket.
Comúnmente los servidores proveen servicios esenciales dentro de una red, ya sea para usuarios privados dentro de una organización o compañía, o para usuarios públicos a través de Internet. Los tipos de servidores más comunes son servidor de base de datosservidor de archivosservidor de correoservidor de impresiónservidor webservidor de juego, y servidor de aplicaciones.2

Un gran número de sistemas usa el modelo de red cliente-servidor, entre ellos los sitios web y los servicios de correo. Un modelo alternativo, el modelo red peer-to-peer permite a todas las computadoras conectadas actuar como clientes o servidores acorde a las necesidades.

Tipos de servidor

En la siguiente lista hay algunos tipos comunes de servidores:
  • Servidor de archivos: es el que almacena varios tipos de archivos y los distribuye a otros clientes en la red.
  • Servidor de impresiones: controla una o más impresoras y acepta trabajos de impresión de otros clientes de la red, poniendo en cola los trabajos de impresión (aunque también puede cambiar la prioridad de las diferentes impresiones), y realizando la mayoría o todas las otras funciones que en un sitio de trabajo se realizaría para lograr una tarea de impresión si la impresora fuera conectada directamente con el puerto de impresora del sitio de trabajo.
  • Servidor de correo: almacena, envía, recibe, enruta y realiza otras operaciones relacionadas con el correo electrónico para los clientes de la red.
  • Servidor de fax: almacena, envía, recibe, enruta y realiza otras funciones necesarias para la transmisión, la recepción y la distribución apropiadas de los fax.
  • Servidor de la telefonía: realiza funciones relacionadas con la telefonía, como es la de contestador automático, realizando las funciones de un sistema interactivo para la respuesta de la voz, almacenando los mensajes de voz, encaminando las llamadas y controlando también la red o el Internet, p. ej., la entrada excesiva de la voz sobre IP (VoIP), etc.
  • Servidor proxy: realiza un cierto tipo de funciones a nombre de otros clientes en la red para aumentar el funcionamiento de ciertas operaciones (p. ej., prefetching y depositar documentos u otros datos que se soliciten muy frecuentemente), también proporciona servicios de seguridad, o sea, incluye un cortafuegos. Permite administrar el acceso a internet en una red de computadoras permitiendo o negando el acceso a diferentes sitios Web.
  • Servidor del acceso remoto (RAS): controla las líneas de módem de los monitores u otros canales de comunicación de la red para que las peticiones conecten con la red de una posición remota, responde llamadas telefónicas entrantes o reconoce la petición de la red y realiza la autenticación necesaria y otros procedimientos necesarios para registrar a un usuario en la red.

EJERCICIO:

Resuelve el siguiente cuestionario:

1. ¿Que es un servidor?

2. ¿En donde se pueden ejecutar los servidores?

3. ¿A través de que arquitectura operan los servidores?

4. ¿Que permite el modelo alternativo red peer-to-peer?

5. Describe cuales son las funciones del servidor de correo


MODELO OSI

El modelo de interconexión de sistemas abiertos (ISO/IEC 7498-1), más conocido como “modelo OSI”, (en inglés, Open System Interconnection) es un modelo de referencia para los protocolos de la red de arquitectura en capas, creado en el año 1980 por la Organización Internacional de Normalización (ISOInternational Organization for Standardization).1 Se ha publicado desde 1983 por la Unión Internacional de Telecomunicaciones (UIT) y, desde 1984, la Organización Internacional de Normalización (ISO) también lo publicó con estándar.2 Su desarrollo comenzó en 1977.3

Nivel físico

Es la primera capa del Modelo OSI. Es la que se encarga de la topología de red y de las conexiones globales de la computadora hacia la red, se refiere tanto al medio físico como a la forma en la que se transmite la información.
Sus principales funciones se pueden resumir como:
  • Definir el medio o medios físicos por los que va a viajar la comunicación: cable de pares trenzados (o no, como en RS232/EIA232), cable coaxial, guías de onda, aire, fibra óptica.
  • Definir las características materiales (componentes y conectores mecánicos) y eléctricas (niveles de tensión) que se van a usar en la transmisión de los datos por los medios físicos.
  • Definir las características funcionales de la interfaz (establecimiento, mantenimiento y liberación del enlace físico).
  • Transmitir el flujo de bits a través del medio.
  • Manejar las señales eléctricas del medio de transmisión, polos en un enchufe, etc.
  • Garantizar la conexión (aunque no la fiabilidad de dicha conexión).

Nivel de enlace de datos[editar]

Esta capa se ocupa del direccionamiento físico, del acceso al medio, de la detección de errores, de la distribución ordenada de tramas y del control del flujo. Es uno de los aspectos más importantes que revisar en el momento de conectar dos ordenadores, ya que está entre la capa 1 y 3 como parte esencial para la creación de sus protocolos básicos (MACIP), para regular la forma de la conexión entre computadoras así determinando el paso de tramas (trama = unidad de medida de la información en esta capa, que no es más que la segmentación de los datos trasladándolos por medio de paquetes), verificando su integridad, y corrigiendo errores, por lo cual es importante mantener una excelente adecuación al medio físico (los más usados son el cable UTP, par trenzado o de 8 hilos), con el medio de red que redirecciona las conexiones mediante un router. Dadas estas situaciones cabe recalcar que el dispositivo que usa la capa de enlace es el Switch que se encarga de recibir los datos del router y enviar cada uno de estos a sus respectivos destinatarios (servidor -> computador cliente o algún otro dispositivo que reciba información como teléfonos móviles, tabletas y diferentes dispositivos con acceso a la red, etc.), dada esta situación se determina como el medio que se encarga de la corrección de errores, manejo de tramas, protocolización de datos (se llaman protocolos a las reglas que debe seguir cualquier capa del modelo OSI).

Nivel de red

Se encarga de identificar el enrutamiento existente entre una o más redes. Las unidades de datos se denominan paquetes, y se pueden clasificar en protocolos enrutables y protocolos de enrutamiento.
El objetivo de la capa de red es hacer que los datos lleguen desde el origen al destino, aun cuando ambos no estén conectados directamente. Los dispositivos que facilitan tal tarea se denominan encaminadores o enrutadores, aunque es más frecuente encontrarlo con el nombre en inglés routers. Los routers trabajan en esta capa, aunque pueden actuar como switch de nivel 2 en determinados casos, dependiendo de la función que se le asigne. Los firewalls actúan sobre esta capa principalmente, para descartar direcciones de máquinas.
En este nivel se realiza el direccionamiento lógico y la determinación de la ruta de los datos hasta su receptor final.

Nivel de transporte

Capa encargada de efectuar el transporte de los datos (que se encuentran dentro del paquete) de la máquina origen a la de destino, independizándolo del tipo de red física que esté utilizando. La PDU de la capa 4 se llama Segmento o Datagrama, dependiendo de si corresponde a TCP o UDP. Sus protocolos son TCP y UDP; el primero orientado a conexión y el otro sin conexión. Trabajan, por lo tanto, con puertos lógicos y junto con la capa red dan forma a los conocidos como Sockets IP:Puerto (ejemplo: 191.16.200.54:80).

Nivel de sesión

Esta capa es la que se encarga de mantener y controlar el enlace establecido entre dos computadores que están transmitiendo datos de cualquier índole. Por lo tanto, el servicio provisto por esta capa es la capacidad de asegurar que, dada una sesión establecida entre dos máquinas, la misma se pueda efectuar para las operaciones definidas de principio a fin, reanudándolas en caso de interrupción. En muchos casos, los servicios de la capa de sesión son parcial o totalmente prescindibles.

Nivel de presentación

El objetivo es encargarse de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres los datos lleguen de manera reconocible.
Esta capa es la primera en trabajar más el contenido de la comunicación que el cómo se establece la misma. En ella se tratan aspectos tales como la semántica y la sintaxis de los datos transmitidos, ya que distintas computadoras pueden tener diferentes formas de manejarlas.
Esta capa también permite cifrar los datos y comprimirlos. Por lo tanto, podría decirse que esta capa actúa como un traductor.

Nivel de aplicación

Ofrece a las aplicaciones la posibilidad de acceder a los servicios de las demás capas y define los protocolos que utilizan las aplicaciones para intercambiar datos, como correo electrónico (Post Office Protocol y SMTP), gestores de bases de datos y servidor de ficheros (FTP). Hay tantos protocolos como aplicaciones distintas y puesto que continuamente se desarrollan nuevas aplicaciones el número de protocolos crece sin parar.
Cabe aclarar que el usuario normalmente no interactúa directamente con el nivel de aplicación. Suele interactuar con programas que a su vez interactúan con el nivel de aplicación pero ocultando la complejidad subyacente.

EJERCICIO:
Encuentra las siete capas del modelo OSI







TOPOLOGIA DE RED


La topología de red se define como el mapa físico o lógico de una red para intercambiar datos. En otras palabras, es la forma en que está diseñada la red, sea en el plano físico o lógico. El concepto de red puede definirse como «conjunto de nodos interconectados». Un nodo es el punto en el que una curva se intercepta a sí misma. Lo que un nodo es concretamente depende del tipo de red en cuestión.
Los componentes fundamentales de una red son el servidor, los terminales, los dispositivos de red y el medio de comunicación.
La topología de red la determina únicamente la configuración de las conexiones entre nodos. La distancia entre los nodos, las interconexiones físicas, las tasas de transmisión y los tipos de señales no pertenecen a la topología de la red, aunque pueden verse afectados por la misma.

Tipos de topologías

Para el día de hoy, existen al menos cinco posibles topologías de red básicas: mallaestrellaárbolbus y anillo.
Topología de red
Topología en Malla
En una topología en malla, cada dispositivo tiene un enlace punto a punto y dedicado con cualquier otro dispositivo. El término dedicado significa que el enlace conduce el tráfico únicamente entre los dos dispositivos que conecta.
Topología en Malla
Por tanto, una red en malla completamente conectada necesita n(n-1)/2 canales físicos para enlazar n dispositivos. Para acomodar tantos enlaces, cada dispositivo de la red debe tener sus puertos de entrada/salida (E/S).
Una malla ofrece varias ventajas sobre otras topologías de red. En primer lugar, el uso de los enlaces dedicados garantiza que cada conexión sólo debe transportar la carga de datos propia de los dispositivos conectados, eliminando el problema que surge cuando los enlaces son compartidos por varios dispositivos. En segundo lugar, una topología en malla es robusta. Si un enlace falla, no inhabilita todo el sistema.
Otra ventaja es la privacidad o la seguridad. Cuando un mensaje viaja a través de una línea dedicada, solamente lo ve el receptor adecuado. Las fronteras físicas evitan que otros usuarios puedan tener acceso a los mensajes.
Topología en Estrella
En la topología en estrella cada dispositivo solamente tiene un enlace punto a punto dedicado con el controlador central, habitualmente llamado concentrador. Los dispositivos no están directamente enlazados entre sí.
A diferencia de la topología en malla, la topología en estrella no permite el tráfico directo de dispositivos. El controlador actúa como un intercambiador: si un dispositivo quiere enviar datos a otro, envía los datos al controlador, que los retransmite al dispositivo final.
Topología en Estrella
Una topología en estrella es más barata que una topología en malla. En una red de estrella, cada dispositivo necesita solamente un enlace y un puerto de entrada/salida para conectarse a cualquier número de dispositivos.
Este factor hace que también sea más fácil de instalar y reconfigurar. Además, es necesario instalar menos cables, y la conexión, desconexión y traslado de dispositivos afecta solamente a una conexión: la que existe entre el dispositivo y el concentrador.
Topología en Árbol
La topología en árbol es una variante de la de estrella. Como en la estrella, los nodos del árbol están conectados a un concentrador central que controla el tráfico de la red. Sin embargo, no todos los dispositivos se conectan directamente al concentrador central. La mayoría de los dispositivos se conectan a un concentrador secundario que, a su vez, se conecta al concentrador central.
Topología en Árbol
El controlador central del árbol es un concentrador activo. Un concentrador activo contiene un repetidor, es decir, un dispositivo hardware que regenera los patrones de bits recibidos antes de retransmitidos.
Retransmitir las señales de esta forma amplifica su potencia e incrementa la distancia a la que puede viajar la señal. Los concentradores secundarios pueden ser activos o pasivos. Un concentrador pasivo proporciona solamente una conexión fisica entre los dispositivos conectados.
Topología en Bus
Una topología de bus es multipunto. Un cable largo actúa como una red troncal que conecta todos los dispositivos en la red.
Topología en Bus
Los nodos se conectan al bus mediante cables de conexión (latiguillos) y sondas. Un cable de conexión es una conexión que va desde el dispositivo al cable principal. Una sonda es un conector que, o bien se conecta al cable principal, o se pincha en el cable para crear un contacto con el núcleo metálico.
Entre las ventajas de la topología de bus se incluye la sencillez de instalación. El cable troncal puede tenderse por el camino más eficiente y, después, los nodos se pueden conectar al mismo mediante líneas de conexión de longitud variable. De esta forma se puede conseguir que un bus use menos cable que una malla, una estrella o una topología en árbol.
Topología en Anillo
En una topología en anillo cada dispositivo tiene una línea de conexión dedicada y punto a punto solamente con los dos dispositivos que están a sus lados. La señal pasa a lo largo del anillo en una dirección, o de dispositivo a dispositivo, hasta que alcanza su destino. Cada dispositivo del anillo incorpora un repetidor.
Topología en Anillo
Un anillo es relativamente fácil de instalar y reconfigurar. Cada dispositivo está enlazado solamente a sus vecinos inmediatos (bien físicos o lógicos). Para añadir o quitar dispositivos, solamente hay que mover dos conexiones.
Las únicas restricciones están relacionadas con aspectos del medio físico y el tráfico (máxima longitud del anillo y número de dispositivos). Además, los fallos se pueden aislar de forma sencilla. Generalmente, en un anillo hay una señal en circulación continuamente.

DIRECCIÓN IP

Una dirección IP es un número que identifica, de manera lógica y jerárquica, a una Interfaz en red (elemento de comunicación/conexión) de un dispositivo (computadora, tableta, portátil, smartphone) que utilice el protocolo IP (Internet Protocol), que corresponde al nivel de red del modelo TCP/IP. La dirección IP no debe confundirse con la dirección MAC, que es un identificador de 48 bits para identificar de forma única la tarjeta de red y no depende del protocolo de conexión utilizando la red.
La dirección IP puede cambiar muy a menudo por cambios en la red o porque el dispositivo encargado dentro de la red de asignar las direcciones IP decida asignar otra IP (por ejemplo, con el protocolo DHCP). A esta forma de asignación de dirección IP se denomina también dirección IP dinámica (normalmente abreviado como IP dinámica). Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados generalmente tienen una dirección IP fija (comúnmente, IP fija o IP estática). Esta no cambia con el tiempo. Los servidores de correo, DNS,
FTP públicos y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red.
Los dispositivos se conectan entre sí mediante sus respectivas direcciones IP. Sin embargo, para las personas es más fácil recordar un nombre de dominio que los números de la dirección IP. Los servidores de nombres de dominio DNS, "traducen" el nombre de dominio en una dirección IP. Si la dirección IP dinámica cambia, es suficiente actualizar la información en el servidor DNS. El resto de las personas seguirán accediendo al dispositivo por el nombre de dominio.

Asignación de direcciones IP

Dependiendo de la implementación concreta, el servidor DHCP tiene tres métodos para asignar las direcciones IP:
  • manualmente, cuando el servidor tiene a su disposición una tabla que empareja direcciones MAC con direcciones IP, creada manualmente por el administrador de la red. Solo clientes con una dirección MAC válida recibirán una dirección IP del servidor.
  • automáticamente, donde el servidor DHCP asigna por un tiempo preestablecido ya por el administrador una dirección IP libre, tomada de un intervalo prefijado también por el administrador, a cualquier cliente que solicite una.
  • dinámicamente, el único método que permite la reutilización de direcciones IP. El administrador de la red asigna un intervalo de direcciones IP para el DHCP y cada ordenador cliente de la LAN tiene su software de comunicación TCP/IP configurado para solicitar una dirección IP del servidor DHCP cuando su tarjeta de interfaz de red se inicie. El proceso es transparente para el usuario y tiene un periodo de validez limitado.

EJERCICIO:
 Responde el siguiente cuestionario de acuerdo con la información proporcionada anteriormente

1. Define que es una IP

2.¿Cuales son algunas razones por las que podría cambiar la dirección IP?

3.¿Porque se caracteriza la dirección IP fija?

4.Describe como asignar una dirección IP mediante el método manual

5.Describe como asignar una dirección IP mediante el método automático

6.Describe como asignar una dirección IP mediante el método dinámico





martes, 13 de junio de 2017

¿QUE ES UNA RED?

Una red de ordenadores (también llamada red de comunicaciones de datos o red informática) es un conjunto de equipos informáticos y software conectados entre sí por medio de dispositivos físicos que envían y reciben impulsos eléctricosondas electromagnéticas o cualquier otro medio para el transporte de datos, con la finalidad de compartir información, recursos y ofrecer servicios.1
Como en todo proceso de comunicación, se requiere de un emisor, un mensaje, un medio y un receptor. La finalidad principal para la creación de una red de ordenadores es compartir los recursos y la información en la distancia, asegurar la confiabilidad y la disponibilidad de la información, aumentar la velocidad de transmisión de los datos y reducir el costo. Un ejemplo es Internet, el cual es una gran red de millones de ordenadores ubicados en distintos puntos del planeta interconectados básicamente para compartir información y recursos.
La estructura y el modo de funcionamiento de las redes informáticas actuales están definidos en varios estándares, siendo el más importante y extendido de todos ellos el modelo TCP/IP basado en el modelo de referencia OSI. Este último, estructura cada red en siete capas con funciones concretas pero relacionadas entre sí; en TCP/IP se reducen a cuatro capas. Existen multitud de protocolos repartidos por cada capa, los cuales también están regidos por sus respectivos estándares.